Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

The scalar product of the vector \(\hat i + \hat j + \hat k\) with a unit vector along the sum of vectors \(2\hat i + 4 \hat j − 5\hat k\) and \(λ\hat i + 2 \hat j + 3\hat k\) is equal to one. Find the value of \( λ.\)

Can you answer this question?

1 Answer

0 votes
  • Unit vector in the direction of $\overrightarrow a=\large\frac{\overrightarrow a}{|\overrightarrow a|}$
  • If $\overrightarrow a=a_1\hat i+a_2\hat j+a_3\hat k$,then $|\overrightarrow a|=\sqrt{a_1^2+a_2^2+a_3^2}$
  • Magnitude of unit vector is 1.
Step 1:
Let us first determine the sum of the vectors:
$(2\hat i+4\hat j-5\hat k)+(\lambda\hat i+2\hat j+3\hat k)=(2+\lambda)\hat i+(4+2)\hat j+(-5+3)\hat k$
Let us assume the sum of these vectors as $\overrightarrow a$
Hence magnitude of $\overrightarrow a$ is $|\overrightarrow a|$
$|\overrightarrow a|=\sqrt{(2+\lambda)^2+6^2+(-2)^2}$
Step 2:
We know unit vector is $\large\frac{\overrightarrow a}{|\overrightarrow a|}$
Hence the unit vector $\overrightarrow a=\large\frac{(2+\lambda)\hat i}{r}+\large\frac{6\hat j}{r}-\large\frac{2\hat k}{r}$
It is given that this unit vector is 1.
Therefore $\large\frac{(2+\lambda)\hat i}{r}+\large\frac{6\hat j}{r}-\large\frac{2\hat k}{r}$$=1$
Step 3:
The scalar product of $\hat i+\hat j+\hat k$ and this unit vector $\overrightarrow a$
$\Rightarrow (\hat i+\hat j+\hat k)\big(\large\frac{(2+\lambda)\hat i}{r}+\large\frac{6\hat j}{r}-\large\frac{2\hat k}{r}\big)$
Therefore $\large\frac{(2+\lambda)}{r}+\large\frac{6}{r}-\large\frac{2}{r}$$=1$
Step 4:
On simplifying we get
$\Rightarrow \lambda+6=r\Rightarrow (\lambda+6)^2=r^2$
Step 5:
Substituting this in equ(1) we get
$\Rightarrow \lambda^2+4\lambda+44=\lambda^2+12\lambda+36$
Hence the value of $\lambda=1$
answered May 24, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App