Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

Let \(\overrightarrow a = \hat i + 4 \hat j + 2\hat k, \overrightarrow b = 3\hat i − 2 \hat j + 7\hat k \: and \: \overrightarrow c = 2\hat i − \hat j + 4\hat k \) . Find a vector \( \overrightarrow d\) which is perpendicular to both \(\overrightarrow a\) and \(\overrightarrow b\) , and \( \overrightarrow c ⋅ \overrightarrow d =15\)

Can you answer this question?

1 Answer

0 votes
  • If $\overrightarrow a+\overrightarrow b$ then $\overrightarrow a.\overrightarrow b=0$
  • $(a_1\hat i+a_2\hat j+a_3\hat k).(b_1\hat i+b_2\hat j+b_3\hat k)=a_1b_1+a_2b_2+a_3b_3$
Step 1:
Let $\overrightarrow a=\hat i+4\hat j+2\hat k$
$\overrightarrow b=3\hat i-2\hat j+7\hat k$
$\overrightarrow c=2\hat i-\hat j+4\hat k$
Let $\overrightarrow d$ be $d_1\hat i+d_2\hat j+d_3\hat k$
It is given $\overrightarrow d$ is $\perp$ to vector $\overrightarrow a=\hat i+4\hat j+2\hat k$
$\Rightarrow \overrightarrow a.\overrightarrow d=0$
Also vector $\overrightarrow d$ is $\perp$ to vector $\overrightarrow b=3\hat i-2\hat j+7\hat k$
$\Rightarrow \overrightarrow b.\overrightarrow d=0$
Step 2:
Now equating equ(1) and equ(2) we get
$\large\frac{d_1}{\begin{vmatrix}4 & 2\\-2 & 7\end{vmatrix}}=\large\frac{d_2}{\begin{vmatrix}2 & 1\\7 & 3\end{vmatrix}}=\large\frac{d_3}{\begin{vmatrix}1 & 4\\3 & -2\end{vmatrix}}$
$\Rightarrow \large\frac{d_1}{28+4}=\large\frac{d_2}{-1}=\large\frac{d_3}{-14}=$$p$(assume)
Therefore $\large\frac{d_1}{32}=\large\frac{d_2}{-1}=\large\frac{d_3}{-14}=$$p$
Therefore $\overrightarrow d=32p\hat i-p\hat j-14p\hat k$
$\overrightarrow c=2\hat i-p\hat j+4\hat k$
Step 3:
It is given $\overrightarrow c.\overrightarrow d=15$
Therefore $(2\hat i-\hat j+4\hat k).(32p\hat i-p\hat j-14p\hat k)=15$
$\Rightarrow 64p+p-56p=15$
Step 4:
Therefore vector $\overrightarrow d=32p\hat i-p\hat j-14p\hat k$
We know $p=\large\frac{5}{3}$
Substitute the value of p we get
$\overrightarrow d=32\times \large\frac{5}{3}$$\hat i-\large\frac{5}{3}$$\hat j-14\times\large\frac{5}{3}$$\hat k$
$ \overrightarrow d=\large\frac{160}{3}$$\hat i-\large\frac{5}{3}$$\hat j+\large\frac{70}{3}$$\hat k$
answered May 24, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App