logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives
0 votes

Using differentials, find the approximate value of each of the following up to 3 places of decimal. $(iii)\;\sqrt{0.6}$

This is third part of multipart q1

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Let $y=f(x)$
  • $\Delta x$ denote a small increment in $x$
  • $\Delta y=f(x+\Delta x)-f(x)$
  • $dy=\big(\large\frac{dy}{dx}\big)\Delta x$
Step 1:
Let $y=\sqrt{0.6}$
$\Rightarrow y=\sqrt x$
$x=0.64$
$\Delta x=-0.04$
$\Delta y=\sqrt{x+\Delta x}-\sqrt x$
$\quad\;\;=\sqrt{0.64+(-0.04)}-\sqrt{0.64}$
$\quad\;\;=\sqrt{0.6}-0.8$
$\sqrt{0.6}=\Delta y+0.8$
$\sqrt{0.6}=\Delta y+0.8$------(1)
Step 2:
$dy$ is the approximate value of $\Delta y$
$dy=\large\frac{dy}{dx}$$\times \Delta x$
$\large\frac{dy}{dx}=\frac{1}{2\sqrt x}$[Differentiating with respect to $x$]
$dy=\large\frac{1}{2\sqrt x}$$.(-0.04)$
$\quad=\large\frac{-0.04}{2\sqrt{0.64}}$
$\quad=\large\frac{-0.04}{2\times 0.8}$
$\quad=-0.025$
Step 3:
Substitute the value of $dy$ in equation (1)
$\sqrt{0.60}=0.8-0.025$
$\qquad\;\;=0.775$
answered Aug 5, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...