logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives
0 votes

Using differentials, find the approximate value of each of the following up to 3 places of decimal. $(0.009)^{\Large\frac{1}{3}}$

$\begin{array}{1 1} 0.208 \\ 0.308 \\ 0.408 \\ 0.228 \end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Let $y=f(x)$
  • $\Delta x$ denote a small increment in $x$
  • $\Delta y=f(x+\Delta x)-f(x)$
  • $dy=\big(\large\frac{dy}{dx}\big)\Delta x$
Step 1:
Let $y=x^{\Large\frac{1}{3}}$
Let $x=0.008$
$dx=0.001$
So that $x+dx=0.009$
Now $(x+\Delta x)^{\Large\frac{1}{3}}-x^{\Large\frac{1}{3}}$
$\Rightarrow (0.009)^{\Large\frac{1}{3}}-(0.008)^{\Large\frac{1}{3}}$
$\Rightarrow (0.009)^{\Large\frac{1}{3}}-0.2$
$\therefore (0.009)^{\Large\frac{1}{3}}-0.2+\Delta y$-----(1)
Step 2:
Also $\large\frac{dy}{dx}$$\Delta x$ is approximately equal to $dy$
$dy=\big(\large\frac{dy}{dx}\big)$$\Delta x$
$\quad=\large\frac{1}{3x^{\Large\frac{2}{3}}}$$\Delta x$
$\quad=\large\frac{1}{3(0.008)^{\Large\frac{2}{3}}}$$\times 0.001$
$\quad=\large\frac{1}{3(0.2)^2}$$\times 0.001$
$\quad=\large\frac{0.001}{3\times 0.04}$
$\quad=\large\frac{0.001}{0.12}$
$\quad=\large\frac{1}{120}$
$\quad=0.008$
Step 3:
Approximate value of $\Delta y=dy=0.008$
Hence from Equation(1) we have
$(0.009)^{\Large\frac{1}{3}}=0.2+0.008$
$\qquad\quad\;\;\;=0.208$
answered Aug 5, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...