logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives
0 votes

Using differentials, find the approximate value of each of the following up to 3 places of decimal. $(x)\;(401)^{\Large\frac{1}{2}}$

This is tenth part of multipart q1

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Let $y=f(x)$
  • $\Delta x$ denote a small increment in $x$
  • $\Delta y=f(x+\Delta x)-f(x)$
  • $dy=\big(\large\frac{dy}{dx}\big)\Delta x$
Step 1:
Let $y=x^{\Large\frac{1}{2}}$
Also let $x=400$
$\Delta x=1$
So that $x+\Delta x=401$
$\Delta y=(x+\Delta x)^{\Large\frac{1}{2}}-x^{\Large\frac{1}{2}}$
$\quad=(400+1)^{\Large\frac{1}{2}}-(400)^{\Large\frac{1}{2}}$
$\quad=(401)^{\Large\frac{1}{2}}-(400)^{\Large\frac{1}{2}}$
$\quad=(401)^{\Large\frac{1}{2}}-20$
$\Delta y=(401)^{\Large\frac{1}{2}}-20$
$(401)^{\Large\frac{1}{2}}=\Delta y+20$
$\large\frac{dy}{dx}=\frac{1}{2}$$x^{-\Large\frac{1}{2}}$
$\quad=\large\frac{1}{2x^{\Large\frac{1}{2}}}$
Step 2:
Now $\Delta y$ is approximately equal to $dy$
$dy=\big(\large\frac{dy}{dx}\big)$$\Delta x$
$\quad=\large\frac{1}{2x^{\Large\frac{1}{2}}}$$\Delta x$
$\quad=\large\frac{1}{2(400)^{\Large\frac{1}{2}}}$$\times 1$
$\quad=\large\frac{1}{2\times 20}$$\times 1$
$\quad=\large\frac{1}{40}$
$\quad=0.025$
Step 3:
Approximate value of $\Delta y=dy=0.025$
Hence from (1) we have
$\sqrt{401}=20+0.025$
$\qquad\;\;=20.025$
answered Aug 5, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...