logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives
0 votes

Using differentials, find the approximate value of each of the following up to 3 places of decimal. $(xiii)\;(81.5)^{\Large\frac{1}{4}}$

This is thirteenth part of multipart q1

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Let $y=f(x)$
  • $\Delta x$ denote a small increment in $x$
  • $\Delta y=f(x+\Delta x)-f(x)$
  • $dy=\big(\large\frac{dy}{dx}\big)\Delta x$
Step 1:
$y=x^{\Large\frac{1}{4}}$
$x=81$
$\Delta x=0.5$
$\Delta y=(x+\Delta x)^{\Large\frac{1}{4}}-x^{\Large\frac{1}{4}}$
$\quad\;\;=(81.5)^{\Large\frac{1}{4}}-(81)^{\Large\frac{1}{4}}$
$\quad\;\;=(81.5)^{\Large\frac{1}{4}}-3$
$(81.5)^{\Large\frac{1}{4}}=3+\Delta y$
Step 2:
$dy$ is approximately equal to $\Delta y$
$dy=\large\frac{dy}{dx}$$\Delta x$
$\quad=\large\frac{1}{4}x^{-\Large\frac{3}{4}}$$.\Delta x$
$\quad=\large\frac{1}{4x^{\Large\frac{3}{4}}}$$.\Delta x$
$\quad=\large\frac{1}{4(81)^{\Large\frac{3}{4}}}$$\times 0.5$
$\quad=\large\frac{0.5}{4\times 27}$
$\quad=\large\frac{0.5}{108}$
$\quad=0.0046296$
Step 3:
$(81.5)^{\Large\frac{1}{4}}=3+0.0046296$
$\qquad\;\;\;\;\;=3.0046296$
$\qquad\;\;\;\;\;=3.005$
answered Aug 5, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...