Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

If \(\overrightarrow a = \hat i + \hat j + \hat k, \overrightarrow b = 2\hat i - \hat j + 3\hat k\) and \(\overrightarrow c = \hat i - 2\hat j + \hat k\), find a unit vector parallel to the vector \(2\overrightarrow a - \overrightarrow b + 3\overrightarrow c\)

$\begin{array}{1 1} (A) \large\frac{1}{\sqrt{22}}(3\hat i +3\hat j+2\hat k) \\ (B) \large\frac{1}{\sqrt{22}}(3\hat i -3\hat j-2\hat k) \\ (C) \large\frac{1}{\sqrt{22}}(3\hat i +3\hat j-2\hat k) \\ (D) \large\frac{1}{\sqrt{22}}(3\hat i -3\hat j+2\hat k) \end{array} $

Can you answer this question?

1 Answer

0 votes
  • Unit vector of $\overrightarrow a=\large\frac{\overrightarrow a}{|\overrightarrow a|}$
  • $|\overrightarrow a|=\sqrt{a_1^2+a_2^2+a_3^2}$ where $\overrightarrow a=a_1\hat i+a_2\hat j+a_3\hat k$
Step 1:
$\overrightarrow a=\hat i+\hat j+\hat k,\overrightarrow b=2\hat i-\hat j+3\hat k$ and $\overrightarrow c=\hat i-2\hat j+\hat k$
$2\overrightarrow a=2(\hat i+\hat j+\hat k)$
$\quad\;\;=2\hat i+2\hat j+2\hat k$
$3\overrightarrow c=3(\hat i-2\hat j+\hat k)$
$\quad\;\;=3\hat i-6\hat j+3\hat k$
Step 2:
We have to find $2\overrightarrow a-\overrightarrow b+3\overrightarrow c$
$2\overrightarrow a-\overrightarrow b+3\overrightarrow c=(2\hat i+2\hat j+2\hat k)-(2\hat i-\hat j+3\hat k)+(3\hat i-6\hat j+3\hat k)$
$\qquad\qquad\qquad=3\hat i-3\hat j+2\hat k$
Step 3:
Next we have to find the magnitude of this vector $|2\overrightarrow a-\overrightarrow b+3\overrightarrow c$|
$|2\overrightarrow a-\overrightarrow b+3\overrightarrow c|=\sqrt{(3)^2+(-3)^2+(2)^2}$
Step 4:
Hence the unit vector parallel to $2\overrightarrow a-\overrightarrow b+3\overrightarrow c=\large\frac{2\overrightarrow a-\overrightarrow b+3\overrightarrow c}{|2\overrightarrow a-\overrightarrow b+3\overrightarrow c|}$
$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad=\large\frac{1}{\sqrt{22}}$$(3\hat i-3\hat j+2\hat k)$
answered May 23, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App