Ask Questions, Get Answers


If $z$ is a complex number having non zero imaginary part and $z^2+z+1=a$ where $a$ is real, then $a$ cannot take which of the following values?

(A) -1 (B) 1/2 (C) 1/3 (D) 3/4

1 Answer

Let $z=x+iy$ where $ y\neq 0$
given: $z^2+z+1=a$ where $a$ is real.
$\Rightarrow\:(x^2-y^2+x+1)+i(2xy+y)=a$ (where $a$ is real)
$\Rightarrow\:x=\large-\frac{1}{2}$ since $\:y\neq 0$
Since $y\neq 0$ $a$ cannot be $\large\frac{3}{4}$
answered Aug 5, 2013 by rvidyagovindarajan_1

Related questions