Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

Find a vector of magnitude $5$ units, and parallel to the resultant of the vectors \( \overrightarrow a = 2\hat i + 3 \hat j - \hat k\) and \(\overrightarrow b = \hat i - 2\hat j + \hat k\)

$\begin{array}{1 1} (A) \large\frac{3\sqrt {10}}{2}\hat i-\large\frac{3\sqrt{10}}{2}\hat j \\ (B) \large\frac{3\sqrt {10}}{2}\hat i+\large\frac{3\sqrt{10}}{2}\hat j \\ (C) \large\frac{-3\sqrt {10}}{2}\hat i-\large\frac{3\sqrt{10}}{2}\hat j \\ (D) \large\frac{-3\sqrt {10}}{2}\hat i+\large\frac{3\sqrt{10}}{2}\hat j \end{array} $

Can you answer this question?

1 Answer

0 votes
  • Resultant of two vectors $\overrightarrow a\:and \: \overrightarrow b$ is given by $\overrightarrow c =\overrightarrow a + \overrightarrow b$
  • $|\overrightarrow a|=\sqrt{a_1^2+a_2^2+a_3^2}$ where $\overrightarrow a=a_1\hat i+a_2\hat j+a_3\hat k$
Step 1:
Let $\overrightarrow c$ be the resultant of $\overrightarrow a$ and $\overrightarrow b$.
Given :$\overrightarrow a=2\hat i+3\hat j-\hat k$ and $\overrightarrow b=\hat i-2\hat j+\hat k$
$\overrightarrow c =\overrightarrow a + \overrightarrow b$
$\quad=(2\hat i+3\hat j-\hat k)+(\hat i-2\hat j+\hat k)$
$\quad=3\hat i+\hat j$
Hence its magnitude $|\overrightarrow c|=\sqrt{3^2+1^2}$
Step 2:
We know unit vector is $\hat n=\large\frac{\overrightarrow a}{|\overrightarrow a|}$
Therefore unit vector of $\overrightarrow c$ = $\large\frac{1}{\sqrt{10}}$$(3\hat i+\hat j)$
$\qquad\qquad\qquad\qquad\quad\;=\large\frac{3}{\sqrt{10}}$$\hat i+\large\frac{3}{\sqrt{10}}$$\hat j$
Step 3:
But it is given $\overrightarrow c$ has a magnitude of 5.
Therefore $5[\big(\large\frac{3}{\sqrt{10}}$$\hat i\big)+\big(\large\frac{3}{\sqrt{10}}$$\hat j\big)]=\large\frac{15}{\sqrt{10}}$$\hat i+\large\frac{15}{\sqrt{10}}$$\hat j$
Step 4:
Rationalizing the denominator we get
$\quad=\large\frac{15\sqrt{10}}{10}$$\hat i+\large\frac{15\sqrt{10}}{10}$$\hat j$
$\quad=\large\frac{3\sqrt{10}}{2}$$\hat i+\large\frac{3\sqrt{10}}{2}$$\hat j$
Hence the required vector $\overrightarrow c=\large\frac{3\sqrt{10}}{2}$$\hat i+\large\frac{3\sqrt{10}}{2}$$\hat j$
answered May 23, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App