Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of north and stops. Determine the girl’s displacement from her initial point of departure.

Can you answer this question?

1 Answer

0 votes
  • By triangle law of vectors : $\overrightarrow {AB}+\overrightarrow{BC}+\overrightarrow{CA}=0$
  • The cosine of the angle made by the vector with the area is the direction cosines.
Step 1:
A girl walks 4km toward west (i.e) along $OX$ axis.
Therefore $\overrightarrow{OP}=-4\hat i$----(1)
Next she goes in the direction $30^{\large\circ}$ east of north (i.e) she moves along $OQ$ and stops at $Q$
This implies $PQ$ makes an angle $60^{\large\circ}$ with $OP$.
Step 2:
Hence the scalar component of $PQ$ along $OX=OQ\cos 60^{\large \circ}$
$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad=3\times \large\frac{1}{2}=\frac{3}{2}$
Step 3:
Scalar vertical component of $PQ$ along $OY=OQ\sin 60^{\large\circ}$
$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad=3\sin 60^{\large\circ}$
$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad=\large\frac{3\sqrt 3}{2}$
Therefore $\overrightarrow{PQ}=\large\frac{3}{2}$$\hat i+\large\frac{3\sqrt 3}{2}$$\hat j$------(2)
Step 4:
The girl walks along $OP$ and then along $PQ$
$\overrightarrow {OP}+\overrightarrow{PQ}=\overrightarrow{OQ}$ (By triangle law of vectors)
By adding eq(1) and eq(2) we get
$\overrightarrow{OQ}=-4\hat i+\large\frac{3}{2}$$\hat i+\large\frac{3\sqrt 3}{2}$$\hat j$
$\overrightarrow{OQ}=-4\hat i+\large\frac{3}{2}$$\hat i+\big(\large\frac{3\sqrt 3}{2}$$\hat j\big)$
$\quad\quad=\large\frac{5}{2}$$\hat i+\large\frac{3\sqrt 3}{2}$$\hat j$
$|\overrightarrow {OQ}|=\sqrt{\big(\large\frac{5}{2}\big)^2+\big(\frac{3\sqrt 3}{2}\big)^2}$
Step 5:
Hence the distance travelled by the girl from her initial position is $\sqrt{13}$ units.
answered May 23, 2013 by sreemathi.v
edited May 23, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App