Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

Find the scalar components and magnitude of the vector joining the points \(P(x_1, y_1, z_1)\) and \(Q(x_2, y_2, z_2).\)

$\begin{array}{1 1} (A) \text{The scalar components of PQ are } (x_2-x_1),\:( y_2-y_1)\;and \;( z_2-z_1),\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2} \\ \text{(B) The scalar components of PQ are} (x_1-x_2),\:( y_1-y_2) \;and \;( z_1-z_2),(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2 \\\text{(C) The scalar components of PQ are} x_1\: y_1\; and \;z_1,(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2 \\ \text{(D) The scalar components of PQ are} x_2\: y_2\; and \;z_2,(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2 \end{array} $

Can you answer this question?

1 Answer

0 votes
  • $\overrightarrow a=x_1\hat i+y_1\hat j+z_1\hat k$
  • The magnitude of a vector $|\overrightarrow a|=\sqrt{x_1^2+y_1^2+z_1^2}$
Step 1:
Let the position vectors of $P(x_1,y_1,z_1)$ and $Q(x_2,y_2,z_2)$ be $\overrightarrow {OP}$ and $\overrightarrow {OQ}$
$\overrightarrow {OP}=x_1\hat i+y_1\hat j+z_1\hat k$
$\overrightarrow {OQ}=x_2\hat i+y_2\hat j+z_2\hat k$
Therefore $\overrightarrow {PQ}=\overrightarrow {OQ}-\overrightarrow {OP}$
$\quad\qquad\qquad=(x_2\hat i+y_2\hat j+z_2\hat k)-(x_1\hat i+y_1\hat j+z_1\hat k)$
$\quad\qquad\qquad=(x_2-x_1)\hat i+(y_2-y_1)\hat j+(z_2-z_1)\hat k$
Step 2:
The scalar components of vector $\overrightarrow {PQ}$ are $(x_2-x_1),(y_2-y_1)$ and $(z_2-z_1)$
answered May 23, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App