Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

Let the vectors \( \overrightarrow a\) and \( \overrightarrow b\) be such that \(| \overrightarrow a | = 3\) and \( |\overrightarrow b | = \frac{\large \sqrt 2}{\large 3}\) , then \( \overrightarrow a \times \overrightarrow b\) is a unit vector, if the angle between \( \overrightarrow a\) and \( \overrightarrow b\) is

\[ \begin{array} (A) \frac{\pi}{6} \quad & (B) \frac{\pi}{4} \quad & (C) \frac{\pi}{3} \quad &(D) \frac{\pi}{2} \end{array} \]

Can you answer this question?

1 Answer

0 votes
  • $\overrightarrow a\times \overrightarrow b=|\overrightarrow a||\overrightarrow b|\sin\theta\; \hat n$ where $\hat n$ is the unit vector.
Step 1:
Given $|\overrightarrow a |=3$ and $|\overrightarrow b|=\large\frac{\sqrt 2}{3}$ and $\overrightarrow a\times\overrightarrow b$ is a unit vector.
$\overrightarrow a\times \overrightarrow b=|\overrightarrow a||\overrightarrow b|\sin\theta\; \hat n$----(1) where $\hat n$ is the unit vector.
But $\overrightarrow a\times \overrightarrow b$ is also a unit vector.
We know $|\overrightarrow a|=3$ and $|\overrightarrow b|=\large\frac{\sqrt 2}{3}$
Step 2:
Substitute these values in eq(1) we get
$1=3\times\large\frac{\sqrt 2}{3}$$\sin\theta$
$\Rightarrow \sin\theta=\large\frac{1}{\sqrt 2}$
Therefore $\theta=\sin^{-1}\big(\large\frac{1}{\sqrt 2}\big)$
Step 3:
Hence the angle between $\overrightarrow a$ and $\overrightarrow b$ is $\large\frac{\pi}{4}$
Hence B is the correct answer.
answered May 23, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App