Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class11  >>  Work, Power and Energy
0 votes

The potential energy of a force field $\hat F$ is given by $v(x,y)=\cos (x+y)$ . The force acting on the particle at position given by coordinate $(0, \large\frac{\pi}{4})$ is

\[(a)\;\frac{-1}{\sqrt 2}(\hat i+\hat j) \quad (b)\;\frac{1}{\sqrt 2}(\hat i+\hat j) \quad (c)\;\bigg(\frac{1}{2}\hat i+\frac{\sqrt 3}{2}\hat j\bigg) \quad (d)\;\bigg(\frac{1}{2}\hat i-\frac{\sqrt 3}{2}\hat j\bigg)\]

Can you answer this question?

1 Answer

0 votes
Let U be the potential energy
$U(x,y)=\cos (x +y)$
$\therefore F_x=\large\frac{-\partial u}{\partial x}$
$\quad =\large\frac{-\partial }{\partial x}$$ \cos (x+y)$
$\quad=\sin (x+y)$
at $(0,\large\frac{\pi}{4})\quad$$ F_x=\large\frac{1}{\sqrt 2}$
$F_y=\large\frac{-\partial u}{\partial y}$
$\quad=\sin (x+y)$
at $(0, \large\frac{\pi}{4}) \quad $$F_y=\large\frac{1}{\sqrt 2}$
$\therefore F= F_x \hat i+F_y \hat j$
$\quad= \large\frac{1}{\sqrt 2}$$(\hat i+\hat j)$
Hence b is the correct answer. 
answered Aug 6, 2013 by meena.p
edited Jun 11, 2014 by lmohan717

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App