+91-9566306857  (or)  +91-9176170648

Ask Questions, Get Answers

Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives

Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be: $ f (x) =\sin x-\cos x,0 < x <2\pi$

$\begin{array}{1 1} Maxima =\sqrt 3\; Minima = -\sqrt 2 \\ Maxima =\sqrt 2\; Minima = -\sqrt 2 \\ Maxima =\sqrt 2 Minima = \sqrt 2 \\ Maxima =\sqrt 2 Minima = -\sqrt 3 \end{array} $

1 Answer

  • $\large\frac{d}{dx}$$(\sin x)=\cos x$
  • $\large\frac{d}{dx}$$(\cos x)=-\sin x$
  • For Maxima and Minima $f'(x)=0$
Step 1:
$f(x)=\sin x-\cos x$
Differentiating with respect to x
$f'(x)=\cos x+\sin x$
$\qquad=\cos x[1+\large\frac{\sin x}{\cos x}]$
$\qquad=\cos x[1+\tan x]$
For Maxima and Minima
$\Rightarrow \cos x+\sin x=0$
$\cos x[1+\tan x]=0$
$1+\tan x=0$
$\tan x=-1$
Step 2:
At $x=\large\frac{3\pi}{4}$
When $x$ is slightly $<\large\frac{3\pi}{4}$
$\cos x=-ve$
$\tan x=-(1+h)$
$1+\tan x=1+(-1-h)=-h$=-ve
$\cos x(1+\tan x)=(-)(-)=+ve$
Step 3:
when $x$ is slightly >$\large\frac{3\pi}{4}$
$\cos x=-ve$
$\tan x=-(1-h)$
$1+\tan x=-1-1+h=+h$=+ve
$f'(x)=\cos x(1+\tan x)$
$f'(x)$ changes sign from +ve to -ve.
Therefore At $x=\large\frac{3\pi}{4}$,there is a point of local maxima.
Step 4:
Local maximum value=$f(\large\frac{3\pi}{4})=$$\sin\large\frac{3\pi}{4}$$-\cos\large\frac{3\pi}{4}$
$\Rightarrow \large\frac{1}{\sqrt 2}+\frac{1}{\sqrt 2}$
$\Rightarrow \large\frac{2}{\sqrt 2}$
$\Rightarrow \sqrt 2$
Step 5:
At $x=\large\frac{7\pi}{4}$
Let $x$ is slightly < $\large\frac{7\pi}{4}$
$\cos x=+ve$
$\tan x=-(1+h)$
$1+\tan x=1-(1+h)=-h$=-ve
$f'(x)=\cos x(1+\tan x)$
When $x$ is slightly >$\large\frac{7\pi}{4}$
$\cos x=+ve$
$\tan x=-(1-h)=-1+h$
$1+\tan x=1-1+h=h=+ve$
$f'(x)=\cos x(1+\tan x)=(+)(+)=+ve$
$f'(x)$ changes sign from -ve to +ve .
Hence,there is a local minima at $x=\large\frac{7\pi}{4}$
Step 6:
Local minimum value=$f(\large\frac{7\pi}{4})$
$\qquad\qquad\qquad\quad\;\;=\sin x-\cos x$
$\qquad\qquad\qquad\quad\;\;=\sin \large\frac{7\pi}{4}$$-\cos\large\frac{7\pi}{4}$
$\qquad\qquad\qquad\quad\;\;=\large\frac{-1}{\sqrt 2}-\frac{1}{\sqrt 2}$
$\qquad\qquad\qquad\quad\;\;=\large\frac{-2}{\sqrt 2}$
$\qquad\qquad\qquad\quad\;\;=-\sqrt 2$
answered Aug 11, 2013 by sreemathi.v
edited Aug 19, 2013 by sharmaaparna1

Related questions