Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives
0 votes

Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be: $ f (x) =\sin x-\cos x,0 < x <2\pi$

$\begin{array}{1 1} Maxima =\sqrt 3\; Minima = -\sqrt 2 \\ Maxima =\sqrt 2\; Minima = -\sqrt 2 \\ Maxima =\sqrt 2 Minima = \sqrt 2 \\ Maxima =\sqrt 2 Minima = -\sqrt 3 \end{array} $

Can you answer this question?

1 Answer

0 votes
  • $\large\frac{d}{dx}$$(\sin x)=\cos x$
  • $\large\frac{d}{dx}$$(\cos x)=-\sin x$
  • For Maxima and Minima $f'(x)=0$
Step 1:
$f(x)=\sin x-\cos x$
Differentiating with respect to x
$f'(x)=\cos x+\sin x$
$\qquad=\cos x[1+\large\frac{\sin x}{\cos x}]$
$\qquad=\cos x[1+\tan x]$
For Maxima and Minima
$\Rightarrow \cos x+\sin x=0$
$\cos x[1+\tan x]=0$
$1+\tan x=0$
$\tan x=-1$
Step 2:
At $x=\large\frac{3\pi}{4}$
When $x$ is slightly $<\large\frac{3\pi}{4}$
$\cos x=-ve$
$\tan x=-(1+h)$
$1+\tan x=1+(-1-h)=-h$=-ve
$\cos x(1+\tan x)=(-)(-)=+ve$
Step 3:
when $x$ is slightly >$\large\frac{3\pi}{4}$
$\cos x=-ve$
$\tan x=-(1-h)$
$1+\tan x=-1-1+h=+h$=+ve
$f'(x)=\cos x(1+\tan x)$
$f'(x)$ changes sign from +ve to -ve.
Therefore At $x=\large\frac{3\pi}{4}$,there is a point of local maxima.
Step 4:
Local maximum value=$f(\large\frac{3\pi}{4})=$$\sin\large\frac{3\pi}{4}$$-\cos\large\frac{3\pi}{4}$
$\Rightarrow \large\frac{1}{\sqrt 2}+\frac{1}{\sqrt 2}$
$\Rightarrow \large\frac{2}{\sqrt 2}$
$\Rightarrow \sqrt 2$
Step 5:
At $x=\large\frac{7\pi}{4}$
Let $x$ is slightly < $\large\frac{7\pi}{4}$
$\cos x=+ve$
$\tan x=-(1+h)$
$1+\tan x=1-(1+h)=-h$=-ve
$f'(x)=\cos x(1+\tan x)$
When $x$ is slightly >$\large\frac{7\pi}{4}$
$\cos x=+ve$
$\tan x=-(1-h)=-1+h$
$1+\tan x=1-1+h=h=+ve$
$f'(x)=\cos x(1+\tan x)=(+)(+)=+ve$
$f'(x)$ changes sign from -ve to +ve .
Hence,there is a local minima at $x=\large\frac{7\pi}{4}$
Step 6:
Local minimum value=$f(\large\frac{7\pi}{4})$
$\qquad\qquad\qquad\quad\;\;=\sin x-\cos x$
$\qquad\qquad\qquad\quad\;\;=\sin \large\frac{7\pi}{4}$$-\cos\large\frac{7\pi}{4}$
$\qquad\qquad\qquad\quad\;\;=\large\frac{-1}{\sqrt 2}-\frac{1}{\sqrt 2}$
$\qquad\qquad\qquad\quad\;\;=\large\frac{-2}{\sqrt 2}$
$\qquad\qquad\qquad\quad\;\;=-\sqrt 2$
answered Aug 11, 2013 by sreemathi.v
edited Aug 19, 2013 by sharmaaparna1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App