Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

Find the area of the triangle with vertices $A(1, 1, 2), B(2, 3, 5)$ and $C(1, 5, 5)$.

$\begin{array}{1 1}(A) \large\frac{\sqrt{61}}{2} sq.units \\ (B) \large\frac{\sqrt{48}}{2} sq.units \\ (C) \sqrt{48} sq.units \\(D) \sqrt{61} sq.units\end{array} $

Can you answer this question?

1 Answer

0 votes
  • Area of a triangle with sides $AB,BC$ and $AC$ is given by $\large\frac{1}{2}|$$\overrightarrow{AB}\times \overrightarrow{BC}|$
Step 1:
Given vertices of the triangle are $A(1,1,2),B(2,3,5)$ and $C(1,5,5)$
Let the position vectors be $\overrightarrow a,\overrightarrow b$ and $\overrightarrow c$
Hence $\overrightarrow a=\hat i+\hat j+2\hat k$
$\qquad\overrightarrow b=2\hat i+3\hat j+5\hat k$
$\qquad\overrightarrow c=\hat i+5\hat j+5\hat k$
Now let us determine $\overrightarrow{AB}=\overrightarrow b-\overrightarrow a$
$\qquad\qquad\qquad\qquad\quad=(2\hat i+3\hat j+5\hat k)-(\hat i+\hat j+2\hat k)$
$\qquad\qquad\qquad\qquad\quad=\hat i+2\hat j+3\hat k$
Step 2:
Next let us determine $\overrightarrow{AC}=\overrightarrow c-\overrightarrow a$
$\qquad\qquad\qquad\qquad\quad=(\hat i+5\hat j+5\hat k)-(\hat i+\hat j+2\hat k)$
$\qquad\qquad\qquad\qquad\quad=4\hat j+3\hat k$
Step 3:
The area of the triangle is given by $\large\frac{1}{2}$$|\overrightarrow {AB}\times \overrightarrow {AC}|$
$\overrightarrow {AB}\times \overrightarrow {AC}=\begin{vmatrix}\hat i & \hat j& \hat k\\1 & 2 & 3\\0 & 4 & 3\end{vmatrix}$
$\qquad\qquad=\hat i(6-12)-\hat j(3-0)+\hat k(4-0)$
$\qquad\qquad=-6\hat i-3\hat j+4\hat k$
Step 4:
$|\overrightarrow {AB}\times \overrightarrow {AC}|=\sqrt{(-6)^2+(-3)^2+4^2}$
Step 5:
The area of the triangle = $\large\frac{1}{2}$$|\overrightarrow {AB}\times \overrightarrow {AC}|$
We know $|\overrightarrow {AB}\times \overrightarrow {AC}|=\sqrt{61}$
Therefore the area of the triangle=$\large\frac{\sqrt {61}}{2}$sq.units.
answered May 22, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App