Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

If either $ \overrightarrow a = \overrightarrow 0 $ or $ \overrightarrow b = \overrightarrow 0 $ then $ \overrightarrow a × \overrightarrow b = \overrightarrow 0$. Is the converse true? Justify your answer with an example.

$\begin{array}{1 1} \text{yes,it's true} \\ \text{No, it's false} \end{array} $

Can you answer this question?

1 Answer

0 votes
  • The magnitude of $|\overrightarrow a|=\sqrt{a_1^2+a_2^2+a_3^2}$
  • Where $\overrightarrow a=a_1\hat i+a_2\hat j+a_3\hat k$
Step 1:
Let $\overrightarrow a=\hat i+\hat j+\hat k$ and $\overrightarrow b=2\hat i+2\hat j+2\hat k$
First let us find the magnitude of $|\overrightarrow a|$
The magnitude of $|\overrightarrow a|=\sqrt{1^2+1^2+1^2}$
This implies $\overrightarrow a \neq 0$
Step 2:
Next let us find the magnitude of $|\overrightarrow b|$
The magnitude of $|\overrightarrow b|=\sqrt{2^2+2^2+2^2}$
This implies $\overrightarrow b \neq 0$
Step 3:
Let us determine $\overrightarrow a\times\overrightarrow b$
$\overrightarrow a\times\overrightarrow b=\begin{vmatrix}\hat i&\hat j&\hat k\\1 & 1 & 1\\2 & 2 & 2\end{vmatrix}$
Let us take 2 as the common factor from $R_3$
$\overrightarrow a\times\overrightarrow b=2\begin{vmatrix}\hat i&\hat j&\hat k\\1 & 1 & 1\\1 & 1 & 1\end{vmatrix}$
Since two rows are identical.Determinant value of $\overrightarrow a\times\overrightarrow b=0$
Hence $\overrightarrow a\times\overrightarrow b=0$
Step 4:
This proves that even if $\overrightarrow a \neq 0$ and $\overrightarrow b\neq 0$,$\overrightarrow a\times\overrightarrow b$ can be zero.
answered May 22, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App