Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives
0 votes

Find the absolute maximum value and the absolute minimum value of the following functions in the given intervals: $ f (x) = \sin x+\cos x, x \in [0,\pi] $

This is second part of multipart Q5, which appeared in model paper 2012.

Can you answer this question?

1 Answer

0 votes
  • $\large\frac{d}{dx}$$(\sin x)=\cos x$
  • $\large\frac{d}{dx}$$(\cos x)=-\sin x$
Step 1:
$f(x)=\sin x+\cos x$
Differentiate with respect to x,
$f'(x)=\cos x-\sin x$
Given interval $[0,\pi]$
For extreme values $f'(x)=0$
$\cos x-\sin x=0$
On simplifying we get
$\Rightarrow \cos x\big[1-\large\frac{\sin x}{\cos x}\big]$$=0$
But $\sin x/\cos x =\ tan x$
$\Rightarrow \cos x[1-\tan x]=0$
$1-\tan x=0$
$\tan x=1$
Step 2:
Now we find $f(x)$ at $x=0,\large\frac{\pi}{4}$$,\pi$
$f(0)=\sin 0+\cos 0$
But $\sin 0= 0$ and $\cos 0 = 1$
Step 3:
But $\sin\large\frac{\pi}{4}=\cos\large\frac{\pi}{4}= \frac{1}{\sqrt2}$
$\qquad\;\;=\large\frac{1}{\sqrt 2}+\frac{1}{\sqrt 2}$
$\qquad\;\;=\large\frac{2}{\sqrt 2}$
$\qquad\;\;=\sqrt 2$
Step 4:
$f(\pi)=\sin \pi+\cos\pi$
Step 5:
Absolute maximum value $=\sqrt 2$ at $x=\large\frac{\pi}{4}$ and absolute minimum value =-1 at $x=\pi$
answered Aug 7, 2013 by sreemathi.v
edited Aug 30, 2013 by sharmaaparna1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App