Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

Find $λ$ and $μ$ if $ ( 2\hat i + 6\hat j + 27\hat k)\times (\hat i + λ\hat j + μ\hat k) = \overrightarrow 0$

$\begin{array}{1 1}(A) \lambda=3,\:and\:\mu=\large\frac{27}{2} \\(B) \lambda=\large\frac{27}{2},\:and\: \normalsize \mu=3 \\ (C) \lambda=-3,\:and\:\mu=\large\frac{27}{2} \\(D) \lambda=3,\:and\:\mu=-\large\frac{27}{2} \end{array} $

Can you answer this question?

1 Answer

0 votes
  • If two vectors are parallel then $\overrightarrow a\times \overrightarrow b$=0.
  • If two vectors are parallel then their coefficients are proportional.
Step 1:
Let $\overrightarrow a=2\hat i+6\hat j+27\hat k$
$\quad\overrightarrow b=\hat i+\lambda\hat j+\mu\hat k$
It is given that $\overrightarrow a\times\overrightarrow b=0$
$\Rightarrow (2\hat i+6\hat j+27\hat k)\times (\hat i+\lambda\hat j+\mu\hat k)=0$
$\overrightarrow a\times\overrightarrow b=0$,it implies $\overrightarrow a$ is parallel to $\overrightarrow b$
Step 2:
Now equating the coefficients of the like terms
(i.e)$\large\frac{2}{1}=\frac{6}{\lambda}$$\Rightarrow \lambda=3.$
Similarly $\large\frac{2}{1}=\frac{27}{\mu}$$\Rightarrow \mu=\large\frac{27}{2}.$
Step 3:
$\lambda=3$ and $\mu=\large\frac{27}{2}$
answered May 22, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App