logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class11  >>  Work, Power and Energy
0 votes

A block rests on an inclined plane. A spring is attached is a pulley and is pulled downward gradually with increasing force. $\mu $ is the coefficient of friction between block and inclined plane . Find the potential energy of the spring at the momentum when block begins to move for a force constant k of spring $[\theta= 30^{\circ}]$

$a)\; k\;mg \bigg[\frac{1}{2}+\frac{\sqrt 3 \mu}{2} \bigg]^2 \\ b)\;\frac{m^2g^2\bigg[\frac{\sqrt 3}{2}+\frac{\mu}{2}\bigg]^2}{2k} \\ c)\; \frac{k^2 m^2}{g^2}\bigg[\frac{1}{2}+\frac{\sqrt 3}{2} \mu\bigg]^2 \\ d)\; \frac{m^2g^2\bigg[\frac{1}{2}+\frac{\sqrt 3}{2} \mu\bigg]^2}{2 k}$

Can you answer this question?
 
 

1 Answer

0 votes
Let x be the extension in the spring
When the block just begins to move
$kx=mg \sin \theta+\mu mg \cos \theta$
$x= \large\frac{mg (\sin \theta+ \mu \cos \theta)}{k}$
The potential energy $=\large\frac{1}{2}$$kx^2$
$\qquad= \large\frac{1}{2}$$k \bigg[\large\frac{mg(\sin \theta+\mu \cos \theta)}{k}\bigg]^2$
$\qquad=\large\frac{m^2g^2(\sin \theta+\mu \cos \theta)}{2k}$
$\qquad=\large\frac{m^2g^2\bigg[\Large\frac{1}{2}+\mu \frac{\sqrt 3}{2}\bigg]^2}{2k}$
Hence b is the correct answer. 

 

answered Aug 7, 2013 by meena.p
edited Feb 17, 2014 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...