$\begin{array}{1 1} 10^2 \\ 1023 \\ 2^{10} \\ 10! \end{array}$

Since each light can be switched on independently,

there are two options for each bulb (on or off)

$\therefore\:$Total no. of ways the bulbs can be operated= $2^{10}$

This includes all the bulbs are kept in off so that the room is not illuminated.

$\therefore$ The no. of ways in which the hall is illuminated=$2^{10}-1=1023$

Ask Question

Tag:MathPhyChemBioOther

Take Test

...