logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class11  >>  Gravitation
0 votes

The ratio of kinetic energy required to raise a satellite upto a height 'h' to the kinetic energy of the satellite at that height (R-radius of earth)

\[(a)\;2h:R \quad (b)\; h:R\quad (c)\;R:2h \quad (d)\;R:h\]
Can you answer this question?
 
 

1 Answer

0 votes
The energy needed to raise the satellite to a height 'h' is
$ \Delta v=v_A -v_B$
$\qquad=\large\frac{-GMm}{R+h}-\bigg(\frac{-GMm}{R}\bigg)$
$\qquad=\large\frac{GMmh}{R(R+h)}$
$\qquad=\large\frac{GMmh}{R^2(1+\frac{h}{R})}\qquad \frac{GM}{R^2}$$=g$
$\qquad=\large\frac{mgh}{(1+\frac{h}{R})}$$=E_1$
$E_2=$ energy of the satellite
$\qquad=\large\frac{1}{2}$$ mv_0^2\qquad (v_0-$orbital velocity )
r- distance of satellite from center of earth
$\qquad= \large\frac{1}{2} $$m \bigg(\large\frac{GM}{r}\bigg)$
$\qquad= \large\frac{1}{2}$$ m \bigg(\large\frac{GM}{R+h}\bigg)$
$\qquad= \large\frac{1}{2}$$ m \bigg(\large\frac{GM}{R^2}\bigg)\frac{R}{\bigg(1+\Large\frac{h}{R}\bigg)}$
$E_2=\large\frac{mgR}{2(1+\frac{h}{R})}$
$\therefore \large\frac{E_1}{E_2}$$=\large\frac{2h}{R}$
Hence a is the correct answer.

 

answered Aug 22, 2013 by meena.p
edited Feb 17, 2014 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...