Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Linear Programming
0 votes

The feasible solution for a LPP is shown in fig.12.12.Let $Z=3x-4y$ be the objective function.Maximum of $Z$ occurs at

\[(A)(5,0) \quad (B)\; (6,5)\quad (C)\;(6,8) \quad (d)\;(4,10)\]

Can you answer this question?

1 Answer

0 votes
  • Let $R$ be the feasible region for a linear programming problem and let $z=ax+by$ be the objective function.When $z$ has an optimum value (maximum or minimum),where variables $x$ and $y$ are subject to constraints described by linear inequalities,this optimum value must occur at a corner point of the feasible region.
  • If R is bounded then the objective function Z has both a maximum and minimum value on R and each of these occur at corner points of R
Step 1:
The objective function is $Z=3x-4y$
The corner points are $(0,0),(5,0),(6,5),(4,10),(0,8)$
For the points $(x,y)$ the objective function subject to $Z=3x-4y$
Step 2:
At $(0,0)$ the objective function $Z=3x-4y\Rightarrow Z=0$
At $(5,0)$ the objective function $Z=3x-4y\Rightarrow 3\times 5-4\times 0=15$
At $(6,5)$ the objective function $Z=3x-4y\Rightarrow 3\times 6-4\times 5=-2$
At $(6,8)$ the objective function $Z=3x-4y\Rightarrow 3\times 6-4\times 8=-14$
At $(4,10)$ the objective function $Z=3x-4y\Rightarrow 3\times 4-4\times 10=-28$
At $(0,8)$ the objective function $Z=3x-4y\Rightarrow 3\times 0-4\times 8=-32$
Step 3:
The maximum value 15 occurs at $(5,0)$
Hence the correct option is $A$
answered Aug 27, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App