Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Integrate the functions\[\frac{3x}{1+2x^4}\]

Can you answer this question?

1 Answer

0 votes
  • $\int\frac{dx}{\sqrt{a^2+x^2}}=\frac{1}{a}\tan^{-1}\big(\frac{x}{a}\big)+c.$
Given:$I=\int \frac{3x}{1+2x^4}dx.$
Put $\sqrt 2x^2=t.$
On differentiating we get,
2\sqrt 2 xdx=dt.$\Rightarrow dx=\frac{dt}{2\sqrt 2}.$
On substituting t and dt we get,
Hence $I=\frac{3}{2\sqrt 2}\int \frac{dt}{1+t^2}dt.$
On integrating we get,
$\;\;\;=\frac{3}{2\sqrt 2}\tan^{-1}(t)+c.$
substituting for t we get,
$\;\;\;=\frac{3}{2\sqrt 2}\tan^{-1}\big(\sqrt 2x^2\big)+c.$


answered Feb 4, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App