Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class11  >>  Gravitation
0 votes

Four similar particles of mass M are orbiting in a circle of radius r in the same angular direction because of their mutual gravitational attraction, velocity of particle is

$a)\; \bigg[\frac{GM}{r} \bigg(\frac{1+ 2 \sqrt 2}{4}\bigg)\bigg]^{\frac {1}{2}}\\ b)\;3 \sqrt {\frac{GM}{r}} \\ c)\;\sqrt {\frac{GM}{r} (1+ 2 \sqrt 2)} \\ d)\; \bigg[\frac{1}{2} \frac{GM}{r} \bigg(\frac{1+ 2 \sqrt 2}{2}\bigg)\bigg]^{\frac {1}{2}} $

Can you answer this question?

1 Answer

0 votes
The net gravitational force = centripetal force
$|F_1|$ force between A and B
$\qquad= \large\frac{GMM}{(\sqrt 2 r)^2}$
$|F_2|$ force between A and D
$\qquad= \large\frac{GMM}{(\sqrt 2 r)^2}$
$|F_3|$ force between A and C
$\qquad= \large\frac{GMM}{( 2 r)^2}$
The components of $F_1$ and $F_2$ along the radius
$|F_1| \cos 45$ and $|F_2| \cos 45 \qquad \bigg[|F_1|=|F_2|=F\bigg]$
Net force $= 2 f \cos 45 +F_3$
$\qquad= 2 \large\frac{GM^2}{(\sqrt 2 r)^2} \times \large\frac{1}{2} + \large\frac{GM^2}{4r^2}$
$\large\frac{Mv_0^2}{r}=\frac{GM^2}{4r^2}$$ [2 \sqrt 2+1]$
$v_0= \bigg[\large\frac{GM}{4r} $$(2 \sqrt 2+1)\bigg]^{1/2}$
Hence a is the orrect answer.


answered Aug 30, 2013 by meena.p
edited Feb 17, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App