logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Integrate the functions\[\frac{1}{\sqrt{(2-x)^2+1}}\]

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $\int\frac{dx}{\sqrt{a^2+x^2}}=log\mid x+\sqrt{x^2+a^2}\mid+c.$
Given:$I=\int \frac{1}{\sqrt{(2-x)^2+1}}dx.$
 
Let 2-x=t.
 
On differentiating we get,
 
-dx=dt.$\Rightarrow dx=-dt.$
 
On substituting t and dt we get,
 
Hence $I=\frac{dx}{\sqrt{t^2+1}}.$
 
On integrating we get,
 
$\int\frac{1}{\sqrt{(2-x)^2+1}}dx=-log\mid(2-x)+\sqrt{(2-x)^2+1}\mid+c.$
 

 

answered Feb 4, 2013 by sreemathi.v
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...