logo

Ask Questions, Get Answers

X
 
Home  >>  JEEMAIN and NEET  >>  Physics  >>  Class11  >>  Gravitation

If a graph is plotted between $T^2$ and $r^3$ for a planet the slope will be

\[(a)\;\frac{4 \pi^2}{GM} \quad (b)\;\frac{GM}{4 \pi ^2} \quad (c)\;4\pi GM \quad (d)\;0 \]

1 Answer

Slope of grap between $T^2 \;and \;r^3$
$\quad= \large\frac{T^2}{r^3}$
$\quad= \large\frac{\bigg( \Large\frac{2 \pi r}{v_0}\bigg)^2}{r^3}$
$\large\frac{mv_0^2}{r}=\frac{GMm}{r^2}$
$\therefore v_0^2 =\large\frac{GM}{r}$
$\quad = \large\frac{(2 \pi r)^2}{r^3} \times \large\frac{1}{GM}$$r$
$\quad= \large\frac{4 \pi ^2}{GM}$
Hence a is the correct answer. 

 

answered Aug 24, 2013 by meena.p
edited Feb 17, 2014 by meena.p
 

Related questions

Download clay6 mobile appDownload clay6 mobile app
...
X