Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Find the integrals of the functions\[\tan^32x\sec2x\]

Can you answer this question?

1 Answer

0 votes
  • $\tan^2x=\sec^2x-1.$
  • $(ii)\int \sec^2xdx=\tan x+c.$
Given $I=\int\tan^32x\sec2xdx.$
$\tan^32x$ can be written as $\tan^22x\tan 2x$.
$\;\;\;=\int\tan^22x.\tan2x.\sec 2xdx.$
But $\tan^22x=\sec^22x-1.$
$\;\;\;=\int[(\sec^22x-).\tan2x.\sec 2x]dx.$
On multiplying,
$\;\;\;=\int\sec^22x.\tan2x.\sec 2x-\int\sec2x.\tan 2xdx.$
Put $\sec2x=t.$
On differentiating
$2\sec2x\tan 2xdx=dt.$
$(\sec2x\tan 2x)dx=\frac{dt}{2}.$
On substituting we get,
$I=\frac{1}{2}\int t^2 dt-\int\sec2x\tan 2xdx.$
On integrating we get,
$\;\;\;=\frac{1}{2}[\frac{t^3}{3}]-\frac{\sec 2x}{2}+c.$
Substituting for t we get,


answered Jan 31, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App