Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class11  >>  Gravitation
0 votes

An artificial satellite of mass m moves in an orbit whose radius is n times the radius of earth. Assuming the resistance to the motion is proportional to square of velocity ie $F= av^2$ where a is a constant. How long will the satellite take to fall to earth. M-mass of earth R- radius of earth

\[(a)\;\frac{m}{a} \bigg(\frac{R}{GM}\bigg)\sqrt {n-1} \quad (b)\;\frac{m}{a} \sqrt{\frac{R}{GM}}(\sqrt n -1) \quad (c)\;\frac{m}{a} \sqrt {\frac{RG}{M}}(\sqrt {n+1}) \quad (d)\;\frac{m}{a} \sqrt {\frac{RG}{M}}(\sqrt n-1) \]

Can you answer this question?

1 Answer

0 votes
Orbital velocity at distance r from center of earth
$v_0=\sqrt {\large\frac{GM}{r}}$
$KE= \large\frac{1}{2} $$ mv_0^2=\large\frac{GMm}{2r}$
$P.E= \large\frac{-GMm}{r}$
Total energy $E= KE+PE$
$E= \large\frac{-GMm}{2r}$
Now $\large\frac{dE}{dt}$$=F.v$
$\qquad= -a \bigg(\sqrt {\large\frac{GM}{r}}\bigg)^3$
$\large\frac{GMm}{2r^2}\bigg(\large\frac{dr}{dt}\bigg)$$=-a \large\frac{GM}{r} \sqrt {\frac{GM}{r}}$
$\large\frac{a}{m}$$ \int \limits_0^t dt=-\large\frac{1}{2}\sqrt {\frac{1}{GM}}\int \limits_{r_i}^{r_f} $$r^{-1/2} dr$
$\large\frac{a}{m} $$\int \limits_0^t dt=-\large\frac{1}{2}\sqrt {\frac{1}{GM}}\int \limits_{nR}^{R} $$r^{-1/2} dr$
$t= \large\frac{m}{a} \sqrt {\frac{R}{GM} }$$ (\sqrt n -1)$
Hence b is the correct answer


answered Aug 29, 2013 by meena.p
edited Feb 18, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App