Email
Chat with tutor
logo

Ask Questions, Get Answers

X
 
Questions  >>  JEEMAIN and NEET  >>  Physics  >>  Class11  >>  Gravitation
Answer
Comment
Share
Q)

An artificial satellite of mass m moves in an orbit whose radius is n times the radius of earth. Assuming the resistance to the motion is proportional to square of velocity ie $F= av^2$ where a is a constant. How long will the satellite take to fall to earth. M-mass of earth R- radius of earth

\[(a)\;\frac{m}{a} \bigg(\frac{R}{GM}\bigg)\sqrt {n-1} \quad (b)\;\frac{m}{a} \sqrt{\frac{R}{GM}}(\sqrt n -1) \quad (c)\;\frac{m}{a} \sqrt {\frac{RG}{M}}(\sqrt {n+1}) \quad (d)\;\frac{m}{a} \sqrt {\frac{RG}{M}}(\sqrt n-1) \]

1 Answer

Comment
A)
Orbital velocity at distance r from center of earth
$v_0=\sqrt {\large\frac{GM}{r}}$
$KE= \large\frac{1}{2} $$ mv_0^2=\large\frac{GMm}{2r}$
$P.E= \large\frac{-GMm}{r}$
Total energy $E= KE+PE$
$E= \large\frac{-GMm}{2r}$
Now $\large\frac{dE}{dt}$$=F.v$
$\large\frac{GMm}{2r^2}\bigg(\large\frac{dr}{dt}\bigg)$$=-av^3$
$\qquad= -a \bigg(\sqrt {\large\frac{GM}{r}}\bigg)^3$
$\large\frac{GMm}{2r^2}\bigg(\large\frac{dr}{dt}\bigg)$$=-a \large\frac{GM}{r} \sqrt {\frac{GM}{r}}$
$\large\frac{a}{m}$$ \int \limits_0^t dt=-\large\frac{1}{2}\sqrt {\frac{1}{GM}}\int \limits_{r_i}^{r_f} $$r^{-1/2} dr$
$\large\frac{a}{m} $$\int \limits_0^t dt=-\large\frac{1}{2}\sqrt {\frac{1}{GM}}\int \limits_{nR}^{R} $$r^{-1/2} dr$
$t= \large\frac{m}{a} \sqrt {\frac{R}{GM} }$$ (\sqrt n -1)$
Hence b is the correct answer

 

Help Clay6 to be free
Clay6 needs your help to survive. We have roughly 7 lakh students visiting us monthly. We want to keep our services free and improve with prompt help and advanced solutions by adding more teachers and infrastructure.

A small donation from you will help us reach that goal faster. Talk to your parents, teachers and school and spread the word about clay6. You can pay online or send a cheque.

Thanks for your support.
Continue
Please choose your payment mode to continue
Home Ask Homework Questions
Your payment for is successful.
Continue
Clay6 tutors use Telegram* chat app to help students with their questions and doubts.
Do you have the Telegram chat app installed?
Already installed Install now
*Telegram is a chat app like WhatsApp / Facebook Messenger / Skype.
...