Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class11  >>  Gravitation
0 votes

If a planet orbiting the sun in a circular orbit suddenly stops, it will fall onto the sun in a time n(T) where T is the period of planets revolution , then n is

\[(a)\;\sqrt 8 \quad (b)\;\frac{\sqrt 2}{8} \quad (c)\; \sqrt 2 \quad (d)\;\sqrt 6 \]
Can you answer this question?

1 Answer

0 votes
Let $r$ be the radius of the orbot of the planet around the sun .
Let time taken to reach the sun be $'t'$ .
Time taken for the planet to revolve around the sun of radius $r=T$
We consider the planet to reach the sun is an elliptical path with time period $2t'=T'$
By Kepler's law
$\large\frac{T'}{T} =\bigg( \large\frac{r'}{r}\bigg)^{3/2}$
$r'= \large\frac{1}{2} $$r$
$T'= T\bigg(\large\frac{1}{2}\bigg)^{3/2}$
$t'= T\bigg(\large\frac{1}{2}\bigg)^{3/2}$$ \times \large\frac{1}{2}$
$t'=\large\frac{\sqrt 2}{8}$$T$
Hence b is the correct answer.


answered Aug 29, 2013 by meena.p
edited Feb 18, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App