logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Find the integrals of the functions\[\frac{\sin^2x}{1+\cos x}\]

$\begin{array}{1 1}x-\sin x+c \\x+\sin x+c \\ x-\cos x+c \\ x+\cos x+c \end{array}$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $(i)\sin2x=2\sin x\cos x.$
  • $\cos x=2\cos^2\frac{x}{2}-1.$
  • $(iii)\sin x=2\sin\frac{x}{2}\cos\frac{x}{2}.$
  • $(iv)\cos x=1-2\sin^2\frac{x}{2}$.
Given:$I=\int\frac{\sin^2x}{1+\cos x}.$
 
This can be written as,
 
$\sin^2x=2\sin^2\frac{x}{2}\cos^2\frac{x}{2}.$
 
$1+\cos x=2\cos^2\frac{x}{2}-1$
 
$I=\int\frac{(2\sin\frac{x}{2}\cos\frac{x}{2})^2}{2\cos^2\frac{x}{2}}dx.$
 
Cancelling $\cos\frac{x}{2}$ which is the common term,we get
 
$\;\;\;=\int2\sin^2\frac{x}{2}dx.$
 
But $\sin^2\frac{x}{2}=\frac{1-\cos x}{2}$.
 
$I=\int 2[\frac{1-\cos x}{2}]dx.$
 
$\;\;\;=\int(1-\cos x)dx.$
 
separating the terms
 
$\;\;\;=\int dx-\int\cos xdx.$
 
On integrating we get,
 
$x-\sin x+c.$
 

 

answered Jan 31, 2013 by sreemathi.v
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...