Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Find the integrals of the functions\[\sin^4x\]

Can you answer this question?

1 Answer

0 votes
  • $(i)1-\sin^2x=\cos^2x.$
  • $(ii)\int\cos xdx=\sin x+c.$
  • $(iii)\sin^2x=\frac{(1-\cos 2x)}{2}.$
  • $(iv)\cos^2x=\frac{(1+\cos 2x)}{2}.$
This can be written as,
But $\sin^2x=\frac{(1-\cos 2x)}{2}.$
$\;\;\;=\int\bigg(\frac{1-\cos 2x}{2}\bigg)\bigg(\frac{1-\cos 2x}{2}\bigg)dx.$
This is the form $(a-b)^2=a^2-2ab+b^2.$
But $\cos^22x=\frac{(1+\cos 4x)}{2}$.
$\;\;\;=\frac{1}{4}\int[1+\bigg(\frac{1+\cos 4x}{2}\bigg)-2\cos 2x]dx.$
On separating the terms we get,
$I=\frac{1}{4}\int[\frac{3}{2}+\frac{1}{2}\cos 4x-2\cos 2x]dx.$
on separating terms we get,
$\;\;\;=\frac{3}{8}\int dx+\frac{1}{8}\int \cos 4xdx-\frac{1}{2}\cos 2xdx.$
On integrating we get,
$\;\;\;=\frac{3}{8}x+\frac{1}{8}\frac{1}{4}\sin 4x-\frac{1}{2}\frac{1}{2}\sin 4x+c.$
On multiply
$\;\;\;=\frac{3}{8}x+\frac{1}{32}\sin 4x-\frac{1}{4}\sin 4x+c.$
Taking $\frac{1}{8}$ as a common factor
$\;\;\;=\frac{1}{8}[3x+\frac{1}{4}\sin 4x-2\sin 4x]+c.$


answered Jan 30, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App