Ask Questions, Get Answers

Home  >>  CBSE XII  >>  Math  >>  Integrals

Find the integrals of the functions\[\sin4x\;\sin8x\]

1 Answer

  • (i)$2\sin x\sin y=\cos(A-B)-\cos(A+B).$
  • $(ii)\int\sin xdx=-\cos x+c.$
  • $(iii)\int\cos xdx=\sin x+c.$
Given $I=\int \sin 4x\sin 8x.$
Using the information from the tool box we write as,
$\;\;\;=\frac{1}{2}\int (\cos 4x-\cos 12x)dx.$
On separating the terms
$\;\;\;=\frac{1}{2}\int\cos 4xdx-\frac{1}{2}\int\cos 12x dx.$
On integrating we get,
$\;\;\;=\frac{1}{2}[\frac{1}{4}\sin 4x]-\frac{1}{2}[\frac{1}{12}\sin 12x]+c.$
Taking $\frac{1}{4}$ as the common factor we get,
$\;\;\;=\frac{1}{4}\left\{[\frac{1}{2}\sin4x]-[\frac{1}{3}\sin 12x]\right\}+c$


answered Jan 30, 2013 by sreemathi.v