Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Find the integrals of the functions\[\sin4x\;\sin8x\]

Can you answer this question?

1 Answer

0 votes
  • (i)$2\sin x\sin y=\cos(A-B)-\cos(A+B).$
  • $(ii)\int\sin xdx=-\cos x+c.$
  • $(iii)\int\cos xdx=\sin x+c.$
Given $I=\int \sin 4x\sin 8x.$
Using the information from the tool box we write as,
$\;\;\;=\frac{1}{2}\int (\cos 4x-\cos 12x)dx.$
On separating the terms
$\;\;\;=\frac{1}{2}\int\cos 4xdx-\frac{1}{2}\int\cos 12x dx.$
On integrating we get,
$\;\;\;=\frac{1}{2}[\frac{1}{4}\sin 4x]-\frac{1}{2}[\frac{1}{12}\sin 12x]+c.$
Taking $\frac{1}{4}$ as the common factor we get,
$\;\;\;=\frac{1}{4}\left\{[\frac{1}{2}\sin4x]-[\frac{1}{3}\sin 12x]\right\}+c$


answered Jan 30, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App