Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class11  >>  Gravitation
0 votes

If G is the universal gravitational constant and $\rho$ is the uniform density of a spherical planet. Then the shortest possible period of rotation of the planet can be

\[(a)\;\sqrt {\frac{\pi G}{2 \rho}} \quad (b)\;\sqrt {\frac{3 \pi G}{\rho}} \quad (c)\;\sqrt {\frac{\pi}{6 G \rho}} \quad (d)\;\sqrt {\frac{3 \pi}{G\rho}} \]
Can you answer this question?

1 Answer

0 votes
For time period to be shortest $w_{max}$ the fastest possible rate of rotation of a planet for which gravitational force on the equator just barely provides the centripetal force needed for the rotation.
Let M be mass and R the radius of planet.
$w_{max}=\sqrt {\large\frac{GM}{R^3}}$
$\qquad= \sqrt {\large\frac{G\bigg(\Large\frac{4}{3} \pi R^3 \rho\bigg)}{R^3}}$
$\qquad=2 \sqrt {\large\frac{\pi G \rho}{3}}$
$\large\frac{2 \pi}{T_{ \Large min}}=2 \sqrt {\large\frac{\pi G \rho}{3}}$
$T_{ min} = \sqrt {\large\frac{3 \pi}{G \rho}}$
Hence d is the correct answer.


answered Aug 30, 2013 by meena.p
edited Feb 18, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App