Ask Questions, Get Answers

Home  >>  CBSE XII  >>  Math  >>  Integrals

Find the integrals of the functions\[\sin^3x\;\cos^3x\]

1 Answer

  • (i)$\sin^2x=1-\cos^2x.$
  • (ii)$\int x^ndx=\begin{bmatrix}x^{n+1}{n+1}\end{bmatrix}+c.$
  • (iii)Method of substitution:
  • If f(x)=t.
  • f'(x)dx=dt.
  • Thus $I=\int f(x)dx=\int t dt.$
Given $I=\int \sin^3x\cos ^3x dx=\int\sin^2x.\sin x.\cos^3xdx$.
Using the information in the tool box we can write as,
$I=\int \cos ^3x(1-\cos^2x)\sin xdx.$
Put $\cos x=t.$
On differentiating we get,
$-\sin xdx=dt$.
$\Rightarrow \sin xdx=-dt.$
On substituting t and dt,
Hence $I=\int t^3(1-t^2)(-dt).$
On multiplying we get,
On integrating we get,
Substituting for t we get,


answered Jan 30, 2013 by sreemathi.v