Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Find the integrals of the functions\[\sin^3(2x+1)\]

Can you answer this question?

1 Answer

0 votes
  • (i)$\sin^2x=\frac{1-\cos 2x}{2}$
  • (ii)$\sin^3x=\frac{3\sin x-\sin 3x}{4}$
  • (iii)Method of substituting
  • If $f(x)=t.\Rightarrow f'(x)dx=dt.$
  • $Thus\; I=\int f(x)dx=\int t dt.$
Given $I=\int \sin^3(2x+1)dx.$
using the information in the toolbox we can write
$\sin^3x=\frac{(3\sin x-\sin 3x)}{4}$
$I=\int\frac{3\sin(2x+1)-\sin 3(2x+1)}{4}dx.$
On separating we get,
$I=\frac{3}{4}\int \sin(2x+1)dx-\frac{1}{4}\int\sin 3(2x+1)dx$
Let 2x+1=t.
On differentiating we get,
2dx=dt$\Rightarrow dx=\frac{dt}{2}$
On substituting t and dt we get,
Hence $I=\frac{3}{4}\int\sin t.\frac{dt}{2}-\int\frac{1}{4}\sin 3t.\frac{dt}{2}$
$\;\;\;=\frac{3}{8}\int\sin t-\frac{1}{8}\int\sin 3t.dt$
On integrating we get,
$\;\;\;=\frac{-3}{8}\cos t-[\frac{1}{8}(\frac{-1}{3}\cos 3t)]+c.$
On multiplying we get,
$\;\;\;=\frac{-3}{8}\cos t+\frac{1}{24}\cos3 t+c.$
Taking $\frac{3}{8}$ as a common factor we get,
$\;\;\;=\frac{3}{8}[-\cos t+\frac{1}{3}\cos 3t]+c.$
Substituting for t we get,
$\;\;\;=\frac{3}{8}[\frac{1}{3}\cos 3(2x+1)-\cos(2x+1)]+c$.


answered Jan 30, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App