Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Find the integrals of the functions\[\cos2x\;\cos4x\;\cos6x\]

Can you answer this question?

1 Answer

0 votes
  • $(i)2\cos x\cos y=\cos (x+y)+\cos (x-y).$
  • $(ii)\frac{1+\cos 2x}{2}=\cos^2x.$
Given $I=\int\cos 2x\cos 4x\cos 6xdx.$
Using the information in the tool box we can write,
$I=\frac{1}{2}\int (\cos 6x+\cos 2x)\cos 6x.dx.$
On multiplying we get,
$\;\;=\frac{1}{2}\int \cos^26xdx+\frac{1}{2}\int \cos 2x\cos 6x dx.$
$\;\;\;=\frac{1}{2}\int \cos 2x\cos 6x dx=\frac{1}{2}\int[\cos (2x+6x)+\cos (2x-6x)]dx.$
$\;\;\;=\frac{1}{2}\int\cos ^26xdx+\frac{1}{2}\int\frac{1}{2}(\cos 8x+\cos 4x)dx.$
But $\cos^2x=\frac{(1+\cos 2x}{2},$so $\cos^2{6x}=\frac{(1+\cos 12x)}{2}$.
$\;\;\;=\frac{1}{2}\int\frac{1+\cos 12x}{2}dx+\frac{1}{4}\int\cos 8xdx+\frac{1}{4}\int\cos 4xdx.$
On separating the terms we get,
$\;\;\;=\frac{1}{4}\int dx+\frac{1}{4}\int\cos 12x dx+\frac{1}{4}\int \cos 8x dx+\frac{1}{4}\cos 4x dx.$
On integrating we get,
$\;\;\;=\frac{1}{4}x+\frac{1}{4}.\frac{1}{12}\sin12x+\frac{1}{4}\frac{1}{8}\sin 8x+\frac{1}{4}\frac{1}{4}\sin 4x+c.$
Taking $\frac{1}{4}$ as the common factor,
$\;\;\;=\frac{1}{4}[x+\frac{1}{12}\sin 12x+\frac{1}{8}\sin 8x+\frac{1}{4}\sin 4x]+c.$


answered Jan 30, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App