Chat with tutor

Ask Questions, Get Answers


How many 6 digit numbers can be formed using the digits 0,1,3,5,7,9 that are divisible by 5? (digits should not be repeated)

$\begin{array}{1 1} 216 \\ 240 \\ 720 \\ 96 \end{array}$

1 Answer

Since the numbers are divisible by 5, in last place (unit's place)
we can have either 5 or 0
Fixing 0 in the last place we can have $5!$ =120 numbers.
Similarly,by fixing 5 at the last place we can have 120 numbers.
But out of these 120 numbers we have to eliminate
the numbers starting with 0.
Because these numbers will be 5 digit numbers.
$i.e.,$ Fixing 0 at the first place and 5 at the last place,
we can have $4!=24$ numbers which are 5 digit numbers.
$\therefore$ The required 6 digit numbers = $120+120-24=216$


Help Clay6 to be free
Clay6 needs your help to survive. We have roughly 7 lakh students visiting us monthly. We want to keep our services free and improve with prompt help and advanced solutions by adding more teachers and infrastructure.

A small donation from you will help us reach that goal faster. Talk to your parents, teachers and school and spread the word about clay6. You can pay online or send a cheque.

Thanks for your support.
Please choose your payment mode to continue
Home Ask Homework Questions
Your payment for is successful.
Clay6 tutors use Telegram* chat app to help students with their questions and doubts.
Do you have the Telegram chat app installed?
Already installed Install now
*Telegram is a chat app like WhatsApp / Facebook Messenger / Skype.