Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Choose the correct answer in $\Large \int \normalsize \frac{10x^9+10^xlog_{e^{10}}dx}{x^{10}+{10}^x}$ equals

$\begin{array}{1 1} (A)\;{10}^x-x^{10}+C \\ (B)\;{10}^x+x^{10}+C \\ (C)\;({10}^x-x^{10})^{-1}+C \\ (D)\;log({10}^x+x^{10})+C\end{array}$

Can you answer this question?

1 Answer

0 votes
  • (i)Method of substitution :
  • Given f(x)dx can be transformed into another form by changing independent variable x to t by substituting x=g(t).
  • Consider $I=\int f(x)dx.$
  • Put x=g(t) so that $\frac{dx}{dt}=g'(t).$
  • $\Rightarrow $dx=g'(t)dt.
  • Thus $I=\int f(g(t).g'(t))dt.$
  • (ii)$x^ndx=\frac{x^{n+1}}{n+1}+c.$
Given $I=\int \frac{10x^9+10x^xlog_e10}{x^{10}+10^x}dx$.
Put $x^{10}+10^x=t.$
On differentiating this,
Now substituting of x and dx we get,
$I=\int \frac{dt}{t}$.
On integrating we get,
$log t+c$.
Substituting back for t we get,
$\int \frac{10x^9+10x^xlog_e10}{x^{10}+10^x}dx=log (x^{10}+10^x)+c$.
Hence D is the correct answer.


answered Jan 30, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App