logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Choose the correct answer in $\Large \int \normalsize \frac{10x^9+10^xlog_{e^{10}}dx}{x^{10}+{10}^x}$ equals

$\begin{array}{1 1} (A)\;{10}^x-x^{10}+C \\ (B)\;{10}^x+x^{10}+C \\ (C)\;({10}^x-x^{10})^{-1}+C \\ (D)\;log({10}^x+x^{10})+C\end{array}$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • (i)Method of substitution :
  • Given f(x)dx can be transformed into another form by changing independent variable x to t by substituting x=g(t).
  • Consider $I=\int f(x)dx.$
  • Put x=g(t) so that $\frac{dx}{dt}=g'(t).$
  • $\Rightarrow $dx=g'(t)dt.
  • Thus $I=\int f(g(t).g'(t))dt.$
  • (ii)$x^ndx=\frac{x^{n+1}}{n+1}+c.$
Given $I=\int \frac{10x^9+10x^xlog_e10}{x^{10}+10^x}dx$.
 
Put $x^{10}+10^x=t.$
 
On differentiating this,
 
$(10x^9+10^xlog_e10)dx=dt.$
 
Now substituting of x and dx we get,
 
$I=\int \frac{dt}{t}$.
 
On integrating we get,
 
$log t+c$.
 
Substituting back for t we get,
 
$\int \frac{10x^9+10x^xlog_e10}{x^{10}+10^x}dx=log (x^{10}+10^x)+c$.
 
Hence D is the correct answer.

 

answered Jan 30, 2013 by sreemathi.v
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...