Chat with tutor

Ask Questions, Get Answers


The no. of ways in which 8 different flowers can be strung to form a garland so that 4 particular flowers are not separated is?

$\begin{array}{1 1} 4!4! \\ \frac{8!}{4!} \\ 288 \\ 5!.4! \end{array}$

1 Answer

  • No. of ways in which $ n$ different things can be arranged in a circle = $(n-1)!$
Since a garland is in circular shape, circular permutation is used.
4 flowers are to be together.
$\therefore$ they are to be considered to be one.
Hence there are 5 different type of flowers.
They can be arranged in a circle in $4!$ ways.
But these 4 flowers that are together can be arranged among themselves in $4!$ ways.
$\therefore$ The required no. of arrangements $= 4!.4!$


Help Clay6 to be free
Clay6 needs your help to survive. We have roughly 7 lakh students visiting us monthly. We want to keep our services free and improve with prompt help and advanced solutions by adding more teachers and infrastructure.

A small donation from you will help us reach that goal faster. Talk to your parents, teachers and school and spread the word about clay6. You can pay online or send a cheque.

Thanks for your support.
Please choose your payment mode to continue
Home Ask Homework Questions
Your payment for is successful.
Clay6 tutors use Telegram* chat app to help students with their questions and doubts.
Do you have the Telegram chat app installed?
Already installed Install now
*Telegram is a chat app like WhatsApp / Facebook Messenger / Skype.