logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

The no. of ways in which 8 different flowers can be strung to form a garland so that 4 particular flowers are not separated is?

$\begin{array}{1 1} 4!4! \\ \frac{8!}{4!} \\ 288 \\ 5!.4! \end{array}$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • No. of ways in which $ n$ different things can be arranged in a circle = $(n-1)!$
Since a garland is in circular shape, circular permutation is used.
4 flowers are to be together.
$\therefore$ they are to be considered to be one.
Hence there are 5 different type of flowers.
They can be arranged in a circle in $4!$ ways.
But these 4 flowers that are together can be arranged among themselves in $4!$ ways.
$\therefore$ The required no. of arrangements $= 4!.4!$

 

answered Sep 4, 2013 by rvidyagovindarajan_1
edited Dec 20, 2013 by meenakshi.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...