logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Integrate the function\[\frac{\sin x}{(1+\cos x)^2}\]

$\begin{array}{1 1} \frac{1}{1+\cos x}+c \\ \large \frac{1}{1-\cos x}+c \\\large \frac{\sin x}{1+\cos x}+c \\ \large \frac{2}{1+\cos x}+c\end{array}$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Method of substitution :
  • Given f(x)dx can be transformed into another form by changing independent variable x to t by substituting x=g(t).
  • Consider $I=\int f(x)dx.$
  • Put x=g(t) so that $\frac{dx}{dt}=g'(t).$
  • $\Rightarrow $dx=g'(t)dt.
  • Thus $I=\int f(g(t).g'(t))dt.$
Given $I=\int \frac{\sin x}{(1+\cos x)^2}dx.$
 
Put $1+\cos x=t.$
 
$-\sin xdx=dt\Rightarrow \sin xdx=-dt.$
 
Now substituting for x and dx we get,
 
$I=\int\frac{-dt} {t^2}=-\int t^{-2}dt.$
 
On integrating we get
,
$-[\frac {t^{-1}}{-1}]=[\frac{1}{t}]+c.$
 
Substituting back for t we get,
 
$\int\frac{\sin x}{(1+\cos x)^2}=\frac{1}{1+\cos x}+c.$
 
 
 

 

answered Jan 29, 2013 by sreemathi.v
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...