$(A)\; 420 \\(B) 210 \\(C) 840 \\(D) 105 $

2 men are selected from 8 men in $^8C_2$ ways.

Since no husband and wife should be in same game,

two women out of remaining 6 are chosen in $^6C_2$ ways.

Now one team can be chosen as $(M_1,W_1)\:or\:(M_1,W_2)$ in 2 ways.

$\therefore$ The required no. of arrangements = $^8C_2\times ^6C_2\times 2$

$=840 $

Ask Question

Tag:MathPhyChemBioOther

Take Test

...