Ask Questions, Get Answers

Home  >>  CBSE XII  >>  Math  >>  Integrals

Integrate the function $\tan^2(2x-3)$

1 Answer

  • (i)Method of substitution :
  • Given f(x)dx can be transformed into another form by changing independent variable x to t by substituting x=g(t).
  • Consider $I=\int f(x)dx.$
  • Put x=g(t) so that $\frac{dx}{dt}=g'(t).$
  • $\Rightarrow $dx=g'(t)dt.
  • Thus $I=\int f(g(t).g'(t))dt.$
  • (ii)$\int \sec^2x=\tan x+c.$
Given $I=\int \tan^2(2x-3)dx.$
Put t=2x-3.
dt=2dx $\Rightarrow dx=\frac{dt}{2}.$
Now substituting for x and dx we get,
But $\tan^2t=(\sec^2t-1)$
$\;\;\;=\frac{1}{2}[\int\sec^2t-\int dt].$
On integrating we get,
$\frac{1}{2}[\tan t-t]+c.$
Substituting back for t we get,
$\;\;\;=\frac{1}{2}[\tan(2x-3)]-x+c.(\frac{3}{2}$ is a constant)


answered Jan 29, 2013 by sreemathi.v