Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

$\int \large\frac{(2\sin 2x-\cos x)}{(6-\cos 2x -4\sin x) }$$dx$

Can you answer this question?

1 Answer

0 votes
  • $I=\int f(x) dx$
  • Put $x=g(t)$ then $dx=g'(t)$
  • Therefore $I=\int f(g(t))g'(t)dt$
  • $\int \large\frac{dx}{x^+a^2}=\frac{1}{a}$$\tan^{-1}\big(\Large\frac{x}{a}\big)$
  • $\int \large\frac{dx}{x}$$=\log \mid x\mid+c$
Step 1:
Let $I = \int \large\frac{ (2\sin2x - \cos x)}{(6-\cos 2x-4\sin x)}$$dx$
We know that $\sin 2x=2\sin x\cos x$
$\qquad=\int\large\frac {[4\sin x\cos x - \cos x] dx}{5+2\sin^2x-4\sin x}$
$\qquad=\int \large\frac{ [\cos x(4\sin x-1)]dx}{[2\sin^2x-4\sin x+5]}$
Step 2:
Put $\sin x = t$ then $\cos xdx = dt$
substituting this we get,
$\qquad=\int \large\frac{ [4t-1]dt}{2t^2-4t+5}$
$\qquad=\int \large\frac{[4t-4+3]dt}{2t^2-4t+5}$
$\qquad=\int \large\frac{[4t-4]dt}{[2t^2-4t+5]} +\frac{3dt}{[2t^2-4t+5]}$
Step 3:
Put $2t^2-4t+5= y$, then $[4t-4]dt = dy$
Therefore $\int \large\frac{ dy}{y }+ 3\int \large\frac{dt}{(t-1)^2+\bigg(\Large\frac{\sqrt 3}{\sqrt 2}\bigg)^2}$
Step 4:
On integrating we get,
$\log |y| + 3 \bigg[\large\frac{\Large\frac{\sqrt 3}{\sqrt 2\tan^{-1}(t-1)}}{\Large\frac{\sqrt 3}{\sqrt 2}}\bigg]+C$
Step 5:
Substituting for $y$ and $t$ we get
$\log|2\sin^2x-4\sin x+5| + \sqrt 3\sqrt 2\tan^{-1}\bigg[\Large\frac{(\sin x-1)}{\sqrt 3}\bigg]$$+C$
answered Sep 12, 2013 by sreemathi.v
edited Sep 12, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App