logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Ad
0 votes

A guy is lying down on the equator, and the sun disappears. He stands up, he is 6 ft tall. The sun is there for 6 minutes before it disappears. What is the radius of the earth?

Can you answer this question?
 
 

1 Answer

0 votes
Ignoring the effect of atmospheric refraction, distance to the horizon from an observer close to the Earth's surface is about:$ d \approx 3.57\sqrt{h} $
Given $h = 6 ft = 1.83 m \rightarrow d = \approx 5km$
Given that the horizon is $5km$, when the sun sets again, it passes this distance of the horizon.,
We know that this must be equal to the angle of: $2\pi$ $\large \frac{6 \times 240 }{24 \times 60 }$
But this we know = $\large\frac{d}{R} \rightarrow $$R = \large \frac{5km}{2\pi}$$ = 796km$, which we know cannot be the radius of the earth.
Therefore, we can infer that the time interval the sun takes to pass the horizon in this case is too long and cannot be 6 minutes, but should be in the order of magnitude of a few seconds.
We know that the radius of the earth is 6350km, so working backwards, we can see that this must be: $\approx \large\frac{24\times60\times60\times5km}{6350km\times2\pi}$$=10.83s$ and couldn't have been $6mins$ (Or this must be another smaller earth-like planet) :)
answered Sep 13, 2013 by balaji.thirumalai
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...