Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

Show that the vectors \(2\hat i - \hat j + \hat k, \: \hat i - 3\hat j - 5\hat k\) and \(3\hat i - 4\hat j - 4\hat k\) form the vertices of a right angled triangle.

Can you answer this question?

1 Answer

0 votes
  • In a right angled triangle ${AB}^2+{BC}^2={AC}^2$
  • If $\overrightarrow a$ and $\overrightarrow b$ are position vectors then $(\overrightarrow b-\overrightarrow a)=\overrightarrow{AB}$
  • $|\overrightarrow a|=\sqrt{a_1^2+a_2^2+a_3^2}$
Step 1:
Let $\overrightarrow a=3\hat i-4\hat j-4\hat k$
$\quad\;\;\overrightarrow b=2\hat i-\hat j+\hat k$
$\quad\;\;\overrightarrow c=\hat i-3\hat j-5\hat k$
Step 2:
Let us find $\overrightarrow{AB}$
$\overrightarrow{AB}=\overrightarrow b-\overrightarrow a$
$\quad\;\;=(2\hat i-\hat j+\hat k)-(3\hat i-4\hat j-4\hat k)$
$\quad\;\;=-\hat i+3\hat j+5\hat k$
Therefore $|AB|^2=35$
Step 3:
Next let us find $\overrightarrow{BC}$
$\overrightarrow{BC}=\overrightarrow c-\overrightarrow b$
$\quad\;\;=(\hat i-3\hat j-5\hat k)-(2\hat i-\hat j+\hat k)$
$\quad\;\;=-\hat i-2\hat j-6\hat k$
Therefore $|BC|^2=41.$
Step 4:
Next let us find $\overrightarrow{CA}$
$\overrightarrow{CA}=\overrightarrow a-\overrightarrow c$
$\quad\;\;=(3\hat i-4\hat j-4\hat k)-(\hat i-3\hat j-5\hat k)$
$\quad\;\;=2\hat i-\hat j+\hat k$
Therefore $|CA|^2=6.$
Step 5:
Hence $41=35+6$
$\Rightarrow |AB|^2+|CA|^2=|BC|^2$
Therefore ABC is a right angled triangle.
answered May 21, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App