Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

Show that the points A(1, 2, 7), B(2, 6, 3) and C(3, 10, –1) are collinear.

Can you answer this question?

1 Answer

0 votes
  • Two or more vectors are said to be collinear if their magnitudes are equal or proportional.
Step 1:
Let the position vectors of points $A,B$ and $C$ be
$\overrightarrow{OA}=\hat i+2\hat j+7\hat k$
$\overrightarrow{OB}=2\hat i+6\hat j+3\hat k$
$\overrightarrow{OC}=3\hat i+10\hat j-\hat k$
Step 2:
Now $\overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}$
$\qquad\quad\;\;=(2\hat i+6\hat j+3\hat k)-(\hat i+2\hat j+7\hat k)$
$\qquad\quad\;\;=\hat i+4\hat j-4\hat k$
Step 3:
$\quad\;\;\;=(3\hat i+10\hat j-\hat k)-(2\hat i+6\hat j+3\hat k)$
$\quad\;\;\;=\hat i+4\hat j-4\hat k$
Step 4:
$\quad\;\;\;=(3\hat i+10\hat j-\hat k)-(\hat i+2\hat j+7\hat k)$
$\quad\;\;\;=2\hat i+8\hat j-8\hat k$
$\quad\;\;\;=2(\hat i+4\hat j-4\hat k)$
Step 5:
Step 6:
Step 7:
Step 8:
Thus $AB+BC=AC$
Hence A,B,C are collinear.
answered May 21, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App