logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Integrate the function $x\;\sqrt{1+2x^2}$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Method of substitution:
  • Given $\int f(x)dx$ can be transformed into another form by changing independent variable x to t by substituting x=g(t).
  • Consider $I=\int f(x)dx.$
  • Put x=g(t) so that $\frac{dx}{dx}=g'(t).
  • dx=g'(t)dt.
  • Thus $ I=\int f(g(t).g'(t))dt.$
Given $ I=x\sqrt {1+2x^2}dx.$
 
Let $t=1+2x^2 $.
 
On differentiating we get,$4xdx=dt.$
 
$\Rightarrow \;xdx=\frac{dt}{4}.$
 
Substituting for t and dt we get,
 
$I=\int \sqrt tdt.$
 
 
On integrating we get,
 
$\;\;\;=\frac{t^\frac{3}{2}}{\frac{5}{2}}+c=\frac{2}{3}t^\frac{3}{2}+c.$
 
Substituting back for t we get,
 
$\;\;\;=\frac{2}{3}(1+2x^2)^\frac{3}{2}+c.$
 
Hence $ \int x\sqrt {1+2x^2}dx=\frac{2}{3}(1+2x^2)^\frac{3}{2}+c.$

 

answered Jan 28, 2013 by sreemathi.v
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...