Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

If the vertices $A, B, C$ of a triangle $ABC$ are $(1, 2, 3), (-1, 0, 0), (0, 1, 2)$ respectively, then find $ \angle ABC. \angle ABC$ is the angle between the vectors $ \overline {BA}$ and \( \overline {BC}\) ].

$\begin{array}{1 1}(A) \cos^{-1}\big(\large\frac{10}{\sqrt{102}}\big) \\ (B) \cos^{-1}\big(\large\frac{-10}{\sqrt{102}}\big) \\(C) \cos^{-1}\big(\large\frac{10}{102}\big) \\ (D) \cos^{-1}\big(\large\frac{-10}{102}\big)\end{array} $

Can you answer this question?

1 Answer

0 votes
  • $\overrightarrow a.\overrightarrow b=|\overrightarrow a||\overrightarrow b|\cos\theta$
  • $\cos\theta=\large\frac{\overrightarrow a.\overrightarrow b}{|\overrightarrow a||\overrightarrow b|}$
Step 1:
Let O be the origin,then position vector
$\overrightarrow {OA}=\hat i+2\hat j+3\hat k$
$\overrightarrow {OB}=-\hat i$
$\overrightarrow {OC}=\hat j+2\hat k$
Step 2:
$\overrightarrow {BC}=\overrightarrow {OC}-\overrightarrow{OB}$
$\quad\;\;=(\hat j+2\hat k)-(-\hat i)$
$\quad\;\;=\hat i+\hat j+2\hat k$
Step 3:
$\overrightarrow {BA}=\overrightarrow {OA}-\overrightarrow{OB}$
$\quad\;\;=(\hat i+2\hat j+3\hat k)-(-\hat i)$
$\quad\;\;=2\hat i+2\hat j+3\hat k$
Step 4:
Now let us find $\angle ABC$
We know $\cos\theta=\large\frac{\overrightarrow a.\overrightarrow b}{|\overrightarrow a||\overrightarrow b|}$
Here $\cos\angle ABC=\large\frac{\overrightarrow{BC}.\overrightarrow{BA}}{|\overrightarrow{BC}||\overrightarrow{BA}|}$
$\qquad\qquad\qquad=\large\frac{(\hat i+\hat j+2\hat k)(2\hat i+2\hat j+3\hat k)}{|\hat i+\hat j+2\hat k||2\hat i+2\hat j+3\hat k|}$
$\qquad\qquad\qquad=\large\frac{1\times 2+1\times 2+2\times 3}{\sqrt{1^2+1^2+2^2}\sqrt{2^2+2^2+3^2}}$
$\qquad\qquad\qquad=\large\frac{2+2+6}{\sqrt 6\sqrt{17}}$
Step 5:
$\cos\angle ABC=\large\frac{10}{\sqrt{102}}$
$\angle ABC=\cos^{-1}\big(\large\frac{10}{\sqrt{102}}\big)$
answered May 21, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App