Ask Questions, Get Answers

Home  >>  CBSE XII  >>  Math  >>  Integrals

Integrate the function $\sqrt{ax+b}$

1 Answer

  • Method of substitution:
  • Given $\int f(x)dx$ can be transformed into another form by changing independent variable x to t by substituting x=g(t).
  • Consider $I=\int f(x)dx.$
  • Put x=g(t) so that $\frac{dx}{dx}=g'(t).
  • dx=g'(t)dt.
  • Thus $ I=\int f(g(t).g'(t))dt.$
Given $I=\int\sqrt {ax+b}.dx.$
Let ax+b=t.
Substituting for t and dt we get,
$I=\int\sqrt t.\frac{dt}{a}.$
$\;\;\;=\frac{1}{a}\int\sqrt t.dt=\frac{1}{a}\int t^\frac{1}{2}dt.$
On integrating we get,
Substituting back for t we get,


answered Jan 28, 2013 by sreemathi.v