logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Integrate the function $\sin(ax+b)\;\cos(ax+b)$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • (i)Method of substitution:
  • Given $\int f(x)dx$ can be transformed into another form by changing independent variable x to t by substituting x=g(t).
  • Consider $I=\int f(x)dx.$
  • Put x=g(t) so that $\frac{dx}{dx}=g'(t).
  • dx=g'(t)dt.
  • Thus $ I=\int f(g(t).g'(t))dt.$
  • (ii)$\sin x\cos x=\frac{1}{2}\sin2x.$
Given $\int\sin (ax+b)\cos(ax+b)dx.$
 
Using the information in the tool box,let us transform the given function as,
 
$I=\int\frac{1}{2}\sin 2(ax+b)dx.$
 
$\;\;\;=\frac{1}{2}\int\sin 2(ax+b)dx.$
 
On integrating we get,
 
$\;\;\;=\frac{-1}{4a}\cos(ax+b)+c.$
 
Hence $\int\sin(ax+b)\cos(ax+b)dx=\frac{-1}{4a}\cos(ax+b)+c.$
 
 

 

answered Jan 28, 2013 by sreemathi.v
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...